To whom it may concern,

The GeneMe considering the latest information on the mutation of the SARS-CoV-2 genome and its influence on the results of RT-PCR tests. We hereby present our Research and Development report the objective of which was to determine if the recent observed mutations in the SARS-CoV-2 affect the loss of specificity of the SAVD RT-PCR test. This research and development report summarizes our findings regarding the influence of *ORF1ab* gene mutations in SARS-CoV-2 on SAVD primers hybridization. For this purpose, bioinformatic analysis of the mutated sequences of the Coronavirus *ORF1ab* gene was performed to assess if the point mutation or deletions lay in the hybridization region of SAVD RT-PCR primers.

The SAVD by GeneMe SARS-CoV-2 Direct Rapid Detection Kit is designed for an *in vitro* identification of the Coronavirus SARS-CoV-2 in a single reaction. The presence of an innovative and patented *Pwo* polymerase and specific primers in the Kit has allowed to create the highly specific and sensitive SARS-CoV-2 rapid detection Kit. The individually designed primers are 100% compatible with the SARS-CoV-2 genomic RNA sequence of *ORF1ab* gene recommended by WHO and deposited in the NCBI database. Amplification of the targeted nucleic acids is observed by an increase of fluorescence signal during the reaction.

The GeneMe constantly cooperates with diagnostic laboratories in Poland and abroad (UK, Norway, Uganda, Mexico), regularly validating the test on clinical trials - swabs and saliva samples to make sure that the SAVD test maintains its sensitivity and specificity to the current SARS-Co-2 virus strains.

We signed below state that the SAVD RT-PCR test's ability to detect SARS-CoV-2 remains at the highest level regardless of new mutations.

Yours sincerely,

Sabne Zoiplauste Dr Sabina Żołędowska

Dr Sabina Żołędowska CQO

Mente Slucrecka

Dr Eng. Marta Skwarecka Head of Research and Development Department

NAME: Marta Skwarecka, Head of RD GeneMe

DATE: 08.06.2021

PROPOSED PRODUCT: SAVD

1.Title (*The title tells what has been done. Should be short (preferably up to ten words) and describe the main point of the research).*

Detection of "Vietnamese variant" of SARS-CoV-2 virus by SAVD test.

2. Purpose and scope (explain what the research is in a long sentence (be specific!))

The aim of the study is to check the universality of the SAVD test for the identification of the new variants of the SARS-CoV-2 virus. The most popular variants of the mutant SARS-CoV-2 virus were analysed in-sillico: B.1.1.7 United Kingdom, B.1.351 South Africa (also known as S.501Y.V2), B.1.1.28 Brazil P1, P2, B .1.617 India and Vietnamese variant – it is an Indian (B.1.617) variant with mutations that originally belong to the U.K. (B.1.1.7). Based on current WHO information, it is a Delta variant (B.1.617.2) with additional mutations such as: K417 in the S gene (Delta + K417N).

3. Method

Date of the test:	08.06.2021
Place of the test:	GeneMe, ul. Szybowcowa 8a, 80-298 Gdansk, Poland
Test conditions	Temp: 22°C
(temperature, humidity):	Humidity: 36%
The person performing the tests:	Dr Eng. Marta Skwarecka
LOT of reagents analyzed:	
LOT of reference reagents and trade name:	

Description of the tested method:

The study consisted of:

- 1. Finding in the analysed variants of the SARS-CoV-2 virus the resulting mutations in the ORF1ab gene relative to the native strain and locating them in the genomic RNA of the virus.
- 2. Assigning individual mutations to appropriate nucleotides.

- 3. Comparison of the location of the mutated nucleotides with the location of the ORF1ab gene fragment, which is the target of the SAVD test.
- **4.** Confirmation or exclusion of the effect of the mutation on the SAVD test identification capabilities.

		1	1	
Sample	Name	Supplier	Producer	Concentration
number			(as commercial	(as commercial
			material)	material)
1.	n/a	n/a	n/a	n/a
2.	n/a	n/a	n/a	n/a

4. Tested samples (enter here what samples were tested)

5. Results (tables with results, tables with comparative results, charts, data repository)

Table 1 shows the popular variants of the SARS-CoV-2 virus along with the changed nucleotides and compared with the target sequence of the SAVD test.

Table 1. Mutations in the ORF1ab gene of popular variants of the SARS-CoV-2 virus and their impact on the possibility of identification with the SAVD test.

Virus variant	Country of origin (emergence)	Amino-acid mutation	Nucleotide mutation	Detection with the SAVD test
Reference Strain: Wuhan- Hu-1, nCoV	China	-	-	Yes
		synonymous mutation	C3037T	
		synonymous mutation	C3457T	
		Thr1567Ile	C4965T	•
B.1.617	India	synonymous mutation	G8491A	Yes
		Thr3646Ala	A11201G	-
		Pro4715Leu	C14408T	
		synonymous mutation	G14772A	
		synonymous mutation	C16134T	

			Gly5530Cys	G16852T		
			Met5753Ile	G17523T		
			Lys6711Arg	A20396G		
			Ser6713Ala	T20401G		
			synonymous mutation	T733C		
	B.1.1.28 P1, P2	Brazil	synonymous mutation	С2749Т		
			Ser1188Leu	C3828T		
			Lys1795Gln	A5648C		
			synonymous mutation	A6319G		
			synonymous mutation	A6613G		
			synonymous mutation	С12778Т	Yes	
			synonymous mutation	С13860Т		
			Glu1264Asn	G17259T		
			synonymous mutation	С100Т		
			Leu3468Val	T10667G		
			synonymous mutation	C11824T		
			Leu3930Phe	C12053T		
	B.1.351 (S 501Y V2)	South Africa	Thr265Ile	C1059T		
			Lys1655Asn	G5230T	Yes	
	(010011112)		Lys3353Arg	A10323AG		
		B.1.1.7 UK	Thr1001Ile	С3267Т		
	_		Ala1708Asp	C5388A		
	B.1.1.7		lle2230Thr	T6954C	Yes	
			SerGlyPhe 3675-	11288-11296 deletion		
			Sorr actetion	Geretion		

			Pro4715Leu	14408-14410		
B.1.617.2	B.1.617.2	India	Pro5401Leu	16466-16468	Yes	
			Gly5063Ser	20515-20517		
		Vietnamese	synonymous mutation	C3037T		
			synonymous mutation	C3457T		
			Thr1567Ile	C4965T		
			synonymous mutation	G8491A		
			Thr3646Ala	A11201G		
			Pro4715Leu	C14408T		
	B.1.617.2+ (Delta+)		synonymous mutation	G14772A		
			synonymous mutation	C16134T		
			Gly5530Cys	G16852T	Yes	
			Met5753Ile	G17523T		
			Lys6711Arg	A20396G		
			Ser6713Ala	T20401G		
			Thr1001Ile	C3267T		
			Ala1708Asp	C5388A		
			lle2230Thr	T6954C		
			SerGlyPhe 3675- 3677 deletion	11288-11296 deletion		
			Pro4715Leu	14408-14410		
			Pro5401Leu	16466-16468		
			Gly5063Ser	20515-20517		

Link to the data repository kept in the cloud: --

6. Conclusions (logical interpretation of the results (what happened, what didn't, why?), Identify the limitation of the study (why something did not work))

The presented analysis shows that none of the mutations occurring in the variants of the SARS-CoV-2 virus, i.e., B.1.1.7 United Kingdom, B.1.617 India and B.1.617.2 Delta, Delta+

Vietnamese did affect the effectiveness of the virus detection with the SAVD test. All analysed variants are fully identifiable with the SAVD test.

7. References (*if there is a reference to the literature, please enter it here*).

- 1. Lopez-Rincon, C. A. Perez-Romero, A. Tonda, L. Mendoza-Maldonado, E. Claassen, J. Garssen, A. D. Kraneveld, Design of Specific Primer Sets for the Detection of B.1.1.7, B.1.351 and P.1 SARS-CoV-2 Variants using Deep Learning, bioRxiv January 21, 2021.
- 2. T. Tapp, First Cases of Brazilian and More Contagious South African Covid-19 Variants Detected in Los Angeles; U.K. Variant Surges, April 7, 2021
- 3. F. Naveca, V. Nascimento, V. Souza et al. Phylogenetic relationship of SARS-CoV-2 sequences from Amazonas with emerging Brazilian variants harboring mutations E484K and N501Y in the Spike protein, 9 Feb 2021
- A. M. Voloch et al., Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil, J Virol, 1 March 2021
- 4. N. R. Faria, I. Morales Claro, D. Candido et al., Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings, 12 January 2021
- 5. SARS-CoV-2 B.1.617 emergence and sensitivity to vaccine-elicited antibodies, bioRxiv 9 May 2021
- 6. Pragya Dhruv Yadav et al., SARS CoV-2 variant B.1.617.1 is highly pathogenic in hamsters than B.1 variant, bioRxiv 5 May 2021.
- 7. Markus Hoffmann et al., SARS-CoV-2 variant B.1.617 is resistant to Bamlanivimab and evades antibodies induced by infection and vaccination, bioRxiv 5 May 2021.
- 8. Vipul Kumar et al., Possible link between higher transmissibility of B.1.617 and B.1.1.7 variants of SARS-CoV-2 and increased structural stability of its spike protein and hACE2 affinity, bioRxiv 29 April 2021
- 9. Sarah Cherian et al., Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India, bioRxiv 24 April 2021
- 10. Pragya Yadav et al. Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees, bioRxiv 23 April 2021
- 11. https://outbreak.info/situation-reports?pango=B.1.617
- 12. https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/scientific-brief-emerging-variants.html
- 13. Jamie Lopez Bernal et al., Effectiveness of COVID-19 vaccines against the B.1.617.2 variant, London 2021
- 14. https://www.france24.com/en/asia-pacific/20210603-who-rules-out-new-hybrid-covid-19-variant-in-vietnam
- 15. https://www.reuters.com/world/asia-pacific/vietnam-detects-hybrid-indian-uk-covid-19-variant-2021-05-29/?utm_medium=Social&utm_source=Twitter
- 16. https://indianexpress.com/article/explained/covid-delta-variant-coronavirus-cases-7344758/
- 17. https://www.republicworld.com/world-news/global-event-news/covid-19-know-about-delta-k417nmutant-which-has-been-spotted-about-90-times-worldwide.html

18.

Approved for external release by Date of approval: 19.07.2021 Signature: Sabne Zoiplanshe

